Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High host density favors greater virulence: a model of parasite–host dynamics based on multi-type branching processes

Identifieur interne : 001413 ( Main/Exploration ); précédent : 001412; suivant : 001414

High host density favors greater virulence: a model of parasite–host dynamics based on multi-type branching processes

Auteurs : K. Borovkov [Australie] ; R. Day [Australie] ; T. Rice [Australie]

Source :

RBID : ISTEX:3CA64775A2E373CED57AC3E1526F5E48FCD70C3D

English descriptors

Abstract

Abstract: We use a multitype continuous time Markov branching process model to describe the dynamics of the spread of parasites of two types that can mutate into each other in a common host population. While most mathematical models for the virulence of infectious diseases focus on the interplay between the dynamics of host populations and the optimal characteristics for the success of the pathogen, our model focuses on how pathogen characteristics may change at the start of an epidemic, before the density of susceptible hosts decline. We envisage animal husbandry situations where hosts are at very high density and epidemics are curtailed before host densities are much reduced. The use of three pathogen characteristics: lethality, transmissibility and mutability allows us to investigate the interplay of these in relation to host density. We provide some numerical illustrations and discuss the effects of the size of the enclosure containing the host population on the encounter rate in our model that plays the key role in determining what pathogen type will eventually prevail. We also present a multistage extension of the model to situations where there are several populations and parasites can be transmitted from one of them to another. We conclude that animal husbandry situations with high stock densities will lead to very rapid increases in virulence, where virulent strains are either more transmissible or favoured by mutation. Further the process is affected by the nature of the farm enclosures.

Url:
DOI: 10.1007/s00285-012-0526-9


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High host density favors greater virulence: a model of parasite–host dynamics based on multi-type branching processes</title>
<author>
<name sortKey="Borovkov, K" sort="Borovkov, K" uniqKey="Borovkov K" first="K." last="Borovkov">K. Borovkov</name>
</author>
<author>
<name sortKey="Day, R" sort="Day, R" uniqKey="Day R" first="R." last="Day">R. Day</name>
</author>
<author>
<name sortKey="Rice, T" sort="Rice, T" uniqKey="Rice T" first="T." last="Rice">T. Rice</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3CA64775A2E373CED57AC3E1526F5E48FCD70C3D</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1007/s00285-012-0526-9</idno>
<idno type="url">https://api.istex.fr/ark:/67375/VQC-Q345FZR6-X/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001431</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001431</idno>
<idno type="wicri:Area/Istex/Curation">001366</idno>
<idno type="wicri:Area/Istex/Checkpoint">000474</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000474</idno>
<idno type="wicri:doubleKey">0303-6812:2012:Borovkov K:high:host:density</idno>
<idno type="wicri:Area/Main/Merge">001415</idno>
<idno type="wicri:Area/Main/Curation">001413</idno>
<idno type="wicri:Area/Main/Exploration">001413</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">High host density favors greater virulence: a model of parasite–host dynamics based on multi-type branching processes</title>
<author>
<name sortKey="Borovkov, K" sort="Borovkov, K" uniqKey="Borovkov K" first="K." last="Borovkov">K. Borovkov</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Mathematics and Statistics, The University of Melbourne, 3010, Parkville</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Day, R" sort="Day, R" uniqKey="Day R" first="R." last="Day">R. Day</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Zoology, The University of Melbourne, 3010, Parkville</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Rice, T" sort="Rice, T" uniqKey="Rice T" first="T." last="Rice">T. Rice</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Mathematics and Statistics, The University of Melbourne, 3010, Parkville</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Mathematical Biology</title>
<title level="j" type="abbrev">J. Math. Biol.</title>
<idno type="ISSN">0303-6812</idno>
<idno type="eISSN">1432-1416</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="2013-05-01">2013-05-01</date>
<biblScope unit="volume">66</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1123">1123</biblScope>
<biblScope unit="page" to="1153">1153</biblScope>
</imprint>
<idno type="ISSN">0303-6812</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0303-6812</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Epidemics</term>
<term>Multitype branching process</term>
<term>Virulence</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We use a multitype continuous time Markov branching process model to describe the dynamics of the spread of parasites of two types that can mutate into each other in a common host population. While most mathematical models for the virulence of infectious diseases focus on the interplay between the dynamics of host populations and the optimal characteristics for the success of the pathogen, our model focuses on how pathogen characteristics may change at the start of an epidemic, before the density of susceptible hosts decline. We envisage animal husbandry situations where hosts are at very high density and epidemics are curtailed before host densities are much reduced. The use of three pathogen characteristics: lethality, transmissibility and mutability allows us to investigate the interplay of these in relation to host density. We provide some numerical illustrations and discuss the effects of the size of the enclosure containing the host population on the encounter rate in our model that plays the key role in determining what pathogen type will eventually prevail. We also present a multistage extension of the model to situations where there are several populations and parasites can be transmitted from one of them to another. We conclude that animal husbandry situations with high stock densities will lead to very rapid increases in virulence, where virulent strains are either more transmissible or favoured by mutation. Further the process is affected by the nature of the farm enclosures.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Borovkov, K" sort="Borovkov, K" uniqKey="Borovkov K" first="K." last="Borovkov">K. Borovkov</name>
</region>
<name sortKey="Borovkov, K" sort="Borovkov, K" uniqKey="Borovkov K" first="K." last="Borovkov">K. Borovkov</name>
<name sortKey="Day, R" sort="Day, R" uniqKey="Day R" first="R." last="Day">R. Day</name>
<name sortKey="Day, R" sort="Day, R" uniqKey="Day R" first="R." last="Day">R. Day</name>
<name sortKey="Rice, T" sort="Rice, T" uniqKey="Rice T" first="T." last="Rice">T. Rice</name>
<name sortKey="Rice, T" sort="Rice, T" uniqKey="Rice T" first="T." last="Rice">T. Rice</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3CA64775A2E373CED57AC3E1526F5E48FCD70C3D
   |texte=   High host density favors greater virulence: a model of parasite–host dynamics based on multi-type branching processes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021